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Drug-induced Arrhythmias are a Major Safety Concern
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State-of-the-Art Practice Not Predictive of Drug Risk



Heart Disease is a Tissue Level Disease

State-of-the-Art Practice (2D plate biology) Not Predictive of Drug Risk

Heart Organoid 3D Cardiac Tissue Cardiac MPS Tissue Chip
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Drug Screening on fetal development Safety pharmacology and ‘clinical trials’

Genetic Disease Modeling



Microphysiological Systems

: : : MP
Microfabrication Microphysiologial Systems (MPS)

Technology
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Human induced pluripotent
stem cells (hiPSC)

- Biofabricated tissue

- Clinically relevant

- Phenotypic tissue model
- Population-based

Carries patient’s genetics
healthy or diseased




Cardiac Microphysiological System - Heart Micromuscle

Multiplexed cardiac MPS 3D cardiac microtissues m

Multiplexed tissue chambers per device * Spontaneous and externally paced
Integrated pacing electrodes : beating

Medla channel F|UId flow

 Voltage and calcium transients

 Beat rate, action potential duration

(QT proxy), beat shape metrics,
arrhythmic events
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Cardiac Microphysiological System
What is the minimal tissue or organoid size to assist in drug discovery?
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Perimysial ‘collagen fibers
aligned with cardiomyocytes

Cell

H=pOTes channel

| 150 pm —
Cell channel mimics perimysial fiber spacing * * Canne
Separate media and cell channels

u-pores between media and cell channels - “endothelial barrier”
Convective transport in media channels

Diffusive transport to tissue (no shear)

Physiologically relevant tissue to media volumes

Flow Velocity”

Mathur, A., Loskill, P., et al., Scientific Reports, 5:8883 (2015) (mm/s)
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How Important is Structure?
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® 3D cardiac micromuscle ® 2D classic cell culture

® Organized beating ® Disorganized beating
® Coordinated contraction magnitude & direction ® Variable contraction magnitude & direction

Mathur, A., Loskill, P., et al., Scientific Reports, 5:8883 (2015) Huebsch, N., Loskill, P., et al., Tissue Engr. Pt. A., 21(5), 467 (2015)



Cardiac Chip - Realtime Clinically Relevant Measurements

eat Rate (bpm) & Contraction Force
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ATP Sourcing Changes and Mitochondrial Development
in Postnatal Cardiomyocytes

Nucleus
P Fetal cardiomyocytes Adult cardiomyocytes
| nucleus
é b=t v--i: $ B . =8, O | | | mitochondria
E‘i %‘{" 2 ot ' Il.* . 0 o mtDNA
low mtDNA:nDNA ratio high mtDNA:nDNA ratio,
Adult intensity mtDNA per tissue volume +/- as in fetus
. ' Unorganized mitochondrial structure
Mitochondria Higher levels of mtDNA per mitochondrial mass ~2-fold more mitochondria per tissue mass,
IFM and SSM division
Lower levels of mtDNA per mitochondrial mass
§ g2 “;» * Concurrent with postnatal hypertrophy, cardiomyocytes switch from
3 e glycolysis to fatty acid oxidation as primary means for making ATP
T o More in
adult _ _ _ _
* Switch back to glycolysis during heart failure

Adult intensity

Pohjoismaki et al. Mol. Biosyst. 2013



Maturation Media Enhances Cardiac MPS Electrophysiology & Inotropy

Standard Medlia - MPS Maturation Media - MPS
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In Silico Maturation of Cardiac MPS Data - Prediction of Adult Drug Response
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Adult Predictions

+ Willcompounds change the behavior of adult cardiac cells?

+ What are the mechanisms of change?

4+ What is the predicted effect /n vivo?

Tveito et al, Scientific Reports, 2018 Jeeger et al, Frontiers in Pharm, 2020

Jeeger et al, Frontiers in Pharm, 2027



simula Berkeley
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In Silico Maturation of Cardiac MPS Data - Prediction of Adult Drug Response

Inverted drug
parameters
ANa =-0.00
Acal = -0.50
AKr =-0.25
AK 1 -0.01
ANa =-0.03
,\Cal_ =-0.03
Agg = -0.52
A,, =000



Case Studies - Eliminating False Positives & Negatives
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Modeling the Effect of Maturation Media on lon Currents and Calcium Handling
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Case Studies - Arrhythmia Classification

FDA E14 Guidance
Upper 95% confidence bound mean AAQTc <10 ms
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Cardiac MPS Predicts Clinical Arrhythmias & Drug Risk
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Cardiac MPS Predicts Clinical Arrhythmias & Drug Risk
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Clinical Trial Case Study - HCQ + AZM to treat COVID-19

Goal: Perform a mock COVID drug QT/QTc screen in the cardiac chip

Typical QT/QTc Study Costs $2-4 Million
» Usually 50-60 subjects per treatment arm

International Journal of Antimicrobial

Agents

Available online 20 March 2020, 105949
In Press, Journal Pre-proof (2)

Hydroxychloroquine and azithromycin as a

» Required to asses a new drug’s potential to delay cardiac repolarization treatment of COVID-19: results of an open-

Dose-Escalation Workflow

label non-randomized clinical tral

Philippe Gautret  ® %, Jean-Christophe Lagier * % *, Philippe Parola * ®, Van Thuan Hoang * ® 9, Line
Meddeb 2, Morgane Mailhe 2, Barbara Doudier ?, Johan Courjon ® ' €, Valérie Giordanengo ", Vera
Esteves Vieira 2, Hervé Tissot Dupont * €, Stéphane Honoré "/, Philippe Colson * €, Eric Chabriére * ¢,

Bernard La Scola * €, Jean-Marc Rolain * €, Philippe Brouqui * ¢, Didier Raoult* 2 &

Hydroxychloroquine or chloroquine with or without a

lllI 1 1 lIIlllI
0

| |

Baseline Control Therapeutic Dose
(Plasma)

Charrez, B., et al. Clin. Transl. Sci. 14, 1155-1165 (2021)

1 10 100

SELELELELE | ' P LA
1000 10000 "™ macrolide for treatment of COVID-19: a multinational
[ registry analysis
Supratherapeutic Dose Mandeep R Mehra, Sapan S Desai, Frank Ruschitzka, Amit N Patel

(10X Plasma)

Retraction—Hydroxychloroquine or chloroquine with or
without a macrolide for treatment of COVID-19:
a multinational registry analysis

Charrez, B., et al. Frontiers in Pharmacology 12, 1831 (2021)



Clinical Trials in a Dish for COVID-19 Drug Repurposing

In vitro safety “clinical trial’ workflow

0.24 uM HCQ &
0.15 uM AZM

v

| 0.12 yM HCQ & 0.075 pM AZM

0.0 ~-r—"-T""T"T""T"T"T"T "T T

o 1 2 3 4 § 6 7 8 9 10

Days of exposure

HCQ

1000
800

600 EH

400

200 §}8

-200

AAPDgy (msec)
AAPDgy (msec)

-400

o 1 2 3 4 5 6 7 8 9 10

Days of exposure
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The QT interval in patients with COVID-19 treated

with hydroxychloroquine and azithromycin
Chorin, E., et al., The QT Interval in Patients with SARS-CoV-2 Infection Treated with Hydroxychloroquine/Azithromycin. 2020.

Clinical Trial Protocol on Chip
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Charrez, B., et al. Clin. Transl. Sci. 14, 1155-1165 (2021)



Clinical Trials in a Dish for COVID-19 Drug Repurposing
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Clinical Trials in a Dish for COVID-19 Drug Repurposing
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Cardiac Micromuscle - Microphysiological System
A hybrid system with on chip electrical and mechanical measurements

Real Time Sampling Blood vessel-like channels - 50pum Pillars measure

@ (biomarkers) contraction force
out @

loading

\port/

Heart micromuscle Barriers allow

150um x 1000pum diffusive transport
2um X 2pum x 40pum

Mathur, A., Loskill, P., et al., Scientific Reports, 5:8883 (2015) Huebsch, N., Charrez, B., et al. Nature Biomedical Engineering 6, 372-388 (2022)



