Developmental Biology of
IPSC-derived Cardiomyocytes



Human Pluripotent Stem Cells
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Human Pluripotent Stem Cells

Embryonic Stem Cell Lines Derived from Human
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Modeling human development and disease
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Cardiac Embryonic Development
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Methods for the Differentiation of Human
Pluripotent Stem Cells

Pluripotent culture Pre-differentiation Differentiation format Mesoderm Cardiac specification Cardiac differentiation
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Structural and functional characterization of

> Molecular Level
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MLC2A: Atrial and immature ventricular
cardiomyocyte marker.

cardiomyocytes

» Physiological Level

Spontaneously contracting cardiomyocytes:

» Ventricular-like action potential morphology (32/35, 91.5%).

» Atrial-like action potentials were observed less commonly
(3/35, 8.5%).

» nodal-like action potentials were not observed (0/35, 0%).
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Six major steps of hPSC cardiac
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Cardiomyocyte maturation
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Cardiomyocyte maturation features
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Metabolically driven maturation of human-induced-

pluripotent-stem-cell-derived cardiac microtissues on
microfluidic chips
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Other strategies to mature hPSC-CM

Human-iPSC-Derived Cardiac Stromal Cells Enhance
Maturation in 3D Cardiac Microtissues and Reveal
Non-cardiomyocyte Contributions to Heart Disease

Enhanced Maturation of Human PSC-derived
Cardiomyocytes in 3D Cardiac Microtissues
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Cardiac differentiation of hiPS monolayers
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Enhancing cardiac maturation by adding
human cardiac fibroblasts into the cardiac MPS
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Challenges of iso-genic multiculture microtissues
» Cardiac Endothelial Differentiation

> Cardiac Fibroblast Differentiation
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Differentiation to Ventricular and Atrial
Cardiomyocytes

Cell Type Differentiation Characterization
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Modeling heart compartments

Modeling heart compartments
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Cardiac subtypes have different contraction properties
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3-chambered cardioid showing the direction of signal propagation

Propagation of GcAMP-Signal
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Optimization of the cardiomyocyte maturation
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Overcome the issues of modeling human
diseases in mice resulting from species
differences in heart physiology



Organ-on-a-chip systems for biomedical research

Single organ chip or

Multi-organ chip

D . iPS cells
* Organoids
* Primary cells

( f )

Comparison of
Disease modelling drug responses

vs
|| Rare Lethal
genetic ‘
. b i $ radiation
SE g t
Cobhorts of different genetic ancestries
or
Vs similar comorbidities
Prenatal

testing

Targeted clinical trial

Toxicity testing Personalize drug selection

'Y
LU
AR A

\‘
I L



