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Why microphysiological systems?

Approximate calculation of culture media volume to cell/tissue volume
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Why microphysiological systems?
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Why microphysiological systems?
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Obesity/Diabetes: What goes wrong

Adipocyte Hypertrophy Hepatic Steatosis R-BeQetixPeation

Macrophage Recruitment Kupffer Cell Activation Loss of Glycemic Control
Change in Polarization Steatohepatitis Overt Diabetes
Insulin Resistance Insulin Resistance
Enhanced Fatty Acid Release Enhanced Glucose Release

Slide courtesy of Andreas Stahl



Obesity/Diabetes: What goes wrong
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Diabetes-on-Chip

Interrogation of tissue interaction in MPS
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Interconnection of MPS
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. Interrogation of tissue interaction in MPS
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Interconnection of MPS: sample outputs
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. Challenges in interconnection
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Interspecies differences in islet features

Table 1. Homotypic and heterotypic contacts of cells within
the islet
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Exocytosis of insulin
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Gold standard protocols for islet functionality
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Gold standard protocols for islet functionality
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. Gold standard protocols for islet functionality
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Gold standard protocols for islet functionality
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Islet B MPS
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Islet § MPS
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Functionality measurements in device
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Islet B MPS
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Engineering robust tissues in MPS
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Conclusions

« Microphysiological systems (MPS) are better in-vitro platform to
recapitulate key metabolic features of tissues.

« MPS tissue integration will allow studying pertinent hallmarks & cross-
talks associated with human metabolic disease.

 Integration is technically challenging that requires multi-disciplinary
approach.

 Synergistic coupling of computational tools with experiments can help
many of these challenges associated with integration.




